Surname

Other Names

GCSE

4250/01

S18-4250-01

Centre

Number

GEOLOGY Theory Paper (Paper version of on-screen assessment)

MONDAY, 21 MAY 2018 - MORNING

1 hour 30 minutes

For Examiner's use only		
Section	Maximum Mark	Mark Awarded
1.	19	
2.	13	
3.	13	
4.	17	
5.	12	
6.	16	
7.	10	
Total	100	

ADDITIONAL MATERIALS

In addition to this examination paper you will need a:

- Data Sheet;
- calculator.

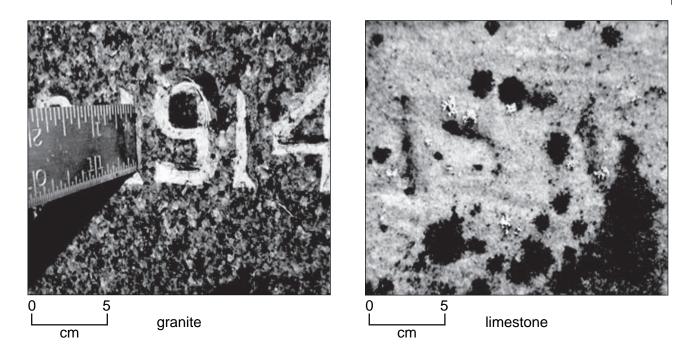
INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Answer **all** questions. Where numerical answers are required figures should be used. Write your answers in the spaces provided.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets alongside each question.


You are reminded that assessment will take into account the quality of written communication (*QWC*) used in your answers to **Section 3 Q5** and **Section 6 Q10**.

2

Answer all questions in each section.

Section 1 – answer questions 1 – 9

Figure 1 shows the dates on two gravestones, one made of granite and the other made of limestone.

1.	Which two of the following statements about Figure 1 and weathering process Tick (\checkmark) only two boxes.	sses are correct ? [2]
	the date on the granite gravestone is still clear because granite contains quartz which weathers quickly by chemical processes	
	reaction with organic acids is a process of biological weathering	
	the date on the limestone gravestone is difficult to read due to the effects of freeze thaw weathering	
	chemical weathering is most rapid in dry climates	
	acidic rain water, due to dissolved carbon dioxide, chemically weathers limestone producing only insoluble materials	
	chemical weathering of the limestone gravestone by weak acids has made the date difficult to read	

> 4250 010003

Table 1 shows the strength of four rocks using a hammer test (striking with a test hammer). The scale is from 10 - 100 with 100 being the strongest.

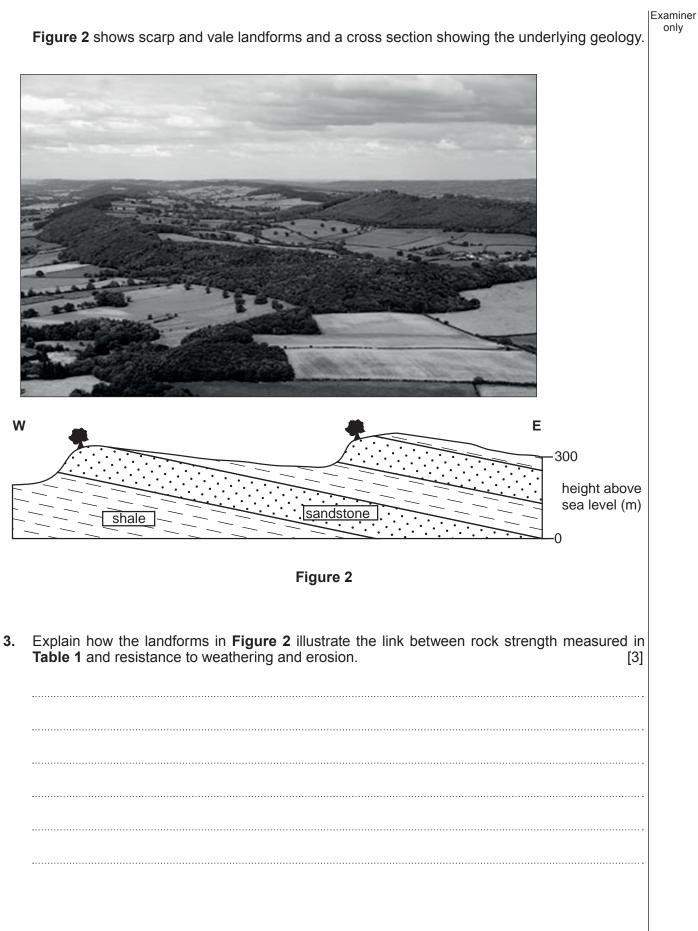

rock	strength (10-100)
shale	36
sandstone	48
basalt	54
marble	72

Table 1

2. **Table 1** shows that the strength of the shale compared to the marble has a ratio of 1:2. Calculate the ratio of the strength of the shale compared to the basalt. Show your calculation below. [2]

Calculation

Ratio of shale to basalt 1:

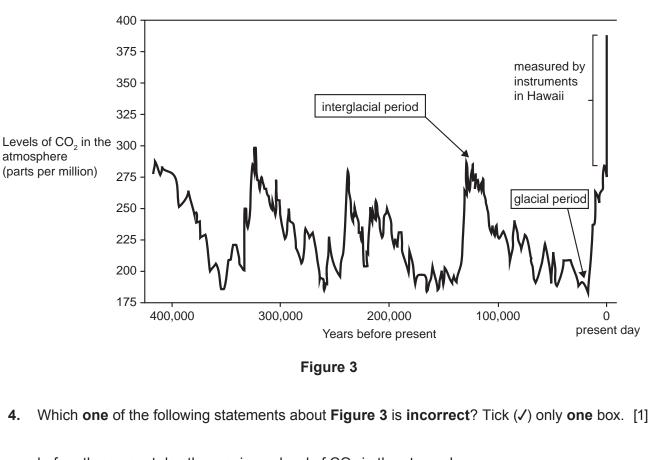


Figure 3 shows how the amount of carbon dioxide (CO_2) in the atmosphere has varied over the past 420,000 years.

before the present day the maximum level of CO₂ in the atmosphere has not been above 320ppm in interglacial periods

CO₂ levels in the atmosphere are variable

CO₂ levels are lowest during glacial periods at approximately 160ppm

CO2 levels today are much higher than any time in the last 420,000 years

glaciations have occurred approximately every 100,000 years

5. Instruments in Hawaii have measured CO₂ in the atmosphere during historical times. Explain how data about atmospheric composition can be obtained for the geological past. [3]

.....

6.	Which one of the following statements about CO_2 in the atmosphere Tick (\mathcal{I}) only one box.	is incorrect ? [1]	
	increased atmospheric CO ₂ leads to an enhanced greenhouse effect		
	formation and burial of limestone leads to an increase in CO_2 in the atmosphere		
	increased volcanic activity leads to an increase in CO_2 in the atmosphere		
	increased burning of fossil fuels leads to an increase in CO_2 in the atmosphere		
	dissolving of carbon dioxide in sea water leads to a decrease in CO_2 in the atmosphere		

One way in which humans can reduce their impact on the atmosphere is to increase the use of renewable energy. **Figure 4** shows two areas of housing and different sources of energy.



Figure 4

7. Name the two types of renewable energy being used in **Figure 4**. Tick (\checkmark) only two boxes.

coal	
oil	
solar	
diesel	
wind	
liquefied natural gas	

[2]

4250 010007

8.	Explain why an increase OR reduction in the area covered by ice caps has an influence on the Earth's atmospheric temperature. [3]	Examiner only

Figure 5 is a newspaper article describing the storms of the winter of 2013-2014 which affected

9

the UK.

During the 2013-2014 winter parts of the United Kingdom were flooded following severe storms. The flooding affected the majority of the Somerset Levels and saw the main railway line to Cornwall and West Devon at Dawlish damaged for several weeks. This was the most exceptional period of winter rainfall in at least 248 years. Met Office forecasters said changes in sea surface temperatures and a reduction in the amount of Arctic sea-ice could be influencing the increase in rainfall. Another theory is that the 0.7°C increase in global temperatures since pre-industrial times is causing the wet weather because a warmer atmosphere can hold more moisture, leading to the greater risk of heavy rain.

Figure 5

9. Which two of the following describe weather extremes in the UK correctly? Tick (/) only two boxes. [2]
when it rains without warning could be caused by global warming or melting Arctic sea ice when temperature reaches 25° C
when night temperature drops below 0° C
could be caused by a warmer atmosphere holding less water when a weather event is significantly different from the historical average

19

10

Figure 6 shows the earthquake intensity around the epicentre of an earthquake that took place in California in 1906.

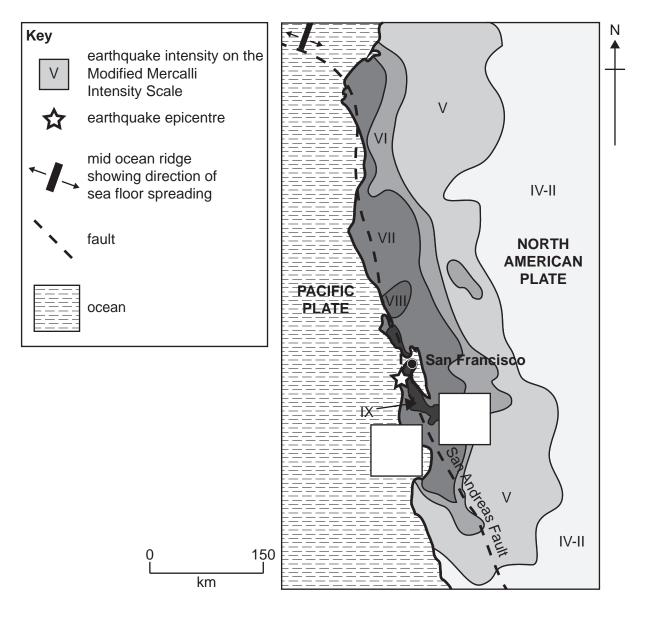


Figure 6

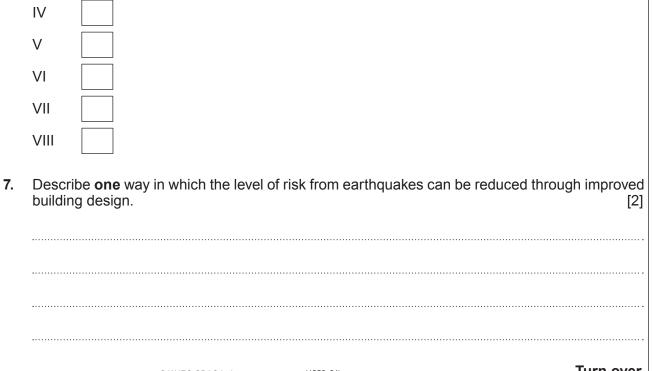
		Examiner only
1.	Which one of the following statements about the earthquake shown in Figure 6 is correct ? Tick (\mathcal{I}) only one box. [1]	Uniy
	earthquake intensity decreases at an equal rate in all directions from the epicentre	
	the epicentre of the earthquake is the point within the Earth where the earthquake originates	
	earthquake intensity decreases more rapidly towards the northwest	
	in San Francisco earthquake intensity was IX on the Modified Mercalli Intensity Scale	
	earthquake intensity depends only on the distance from the epicentre	
2.	The San Andreas Fault in Figure 6 forms a plate margin. Draw two of the arrows shown below in the empty boxes in Figure 6 to show the directions of relative plate movement at those locations.	o
		4250
3.	Name the type of plate margin between the North American and Pacific plate formed at the San Andreas Fault. Tick (\checkmark) only one box. [1]	
	divergent (constructive)	
	convergent (destructive) ocean-ocean	
	convergent (destructive) ocean-continent	
	convergent (destructive) continent-continent	

conservative

© WJEC CBAC Ltd.

Turn over.

Examiner only Which two of the following statements correctly describe the San Andreas Fault? 4. Tick (\checkmark) only **two** boxes. [2] a normal fault a transform fault caused by tensional stress a strike-slip fault a reverse fault a thrust fault caused by compressional stress 5. Which one of the following occurs at the San Andreas Fault? Tick (\checkmark) only one box. [1] shallow, medium and deep focus earthquakes volcanic activity without seismic activity deep focus earthquakes only volcanic activity and deep focus earthquakes shallow focus earthquakes only


Modified Mercalli Intensity Scale		
Mercalli Intensity	Eye–witness observations	
I	Felt by very few people.	
II	Felt by a few people mainly on the upper floors of buildings.	
III	Felt by people mainly on the upper floors of buildings. Cars may rock slightly. Vibrations similar to a passing truck.	
IV	Felt indoors by most people and outdoors by a few. Windows and doors disturbed. Walls make a cracking sound. Objects on shelves shake. Vibrations like a heavy truck striking a building.	
V	Felt by most people. Windows broken. Objects on shelves overturned.	
VI	Felt by all people. Heavy furniture moved. Plaster falls off walls.	
VII	Considerable damage to poorly built or badly designed structures. Chimneys broken. Slight to moderate damage in well-built structures. Damage negligible in buildings of good design.	
VIII	Damage great in poorly built structures. Considerable damage in ordinary buildings with partial collapse. Chimneys, walls and chimney stacks fall. Damage slight in specially designed structures. Furniture broken.	
IX	Damage considerable even in specially designed structures. Great damage in large buildings with partial collapse. Buildings shifted off foundations. Ground cracked.	

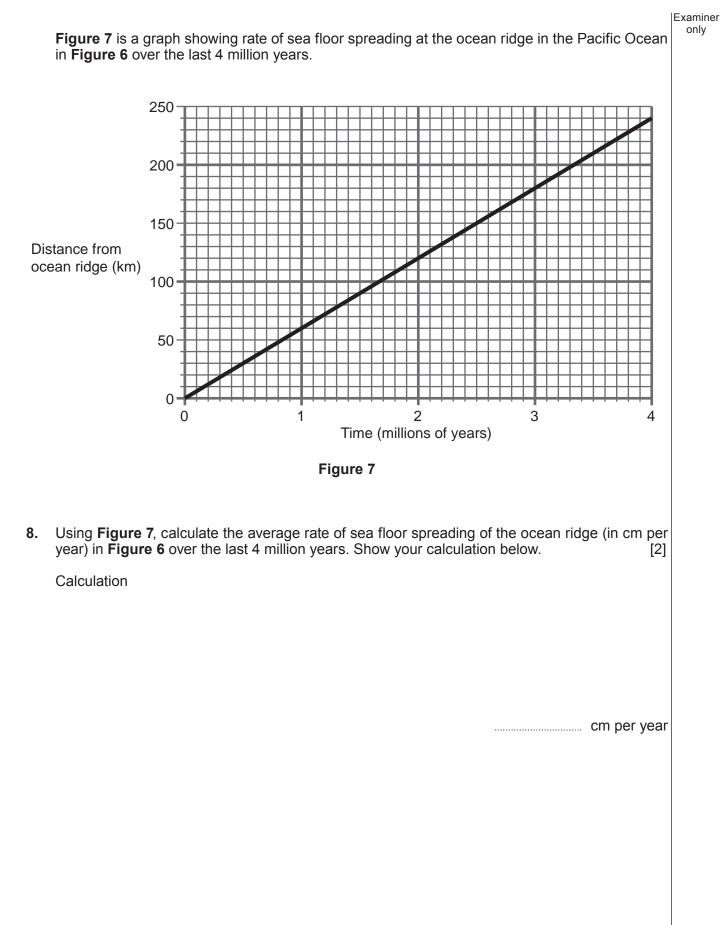
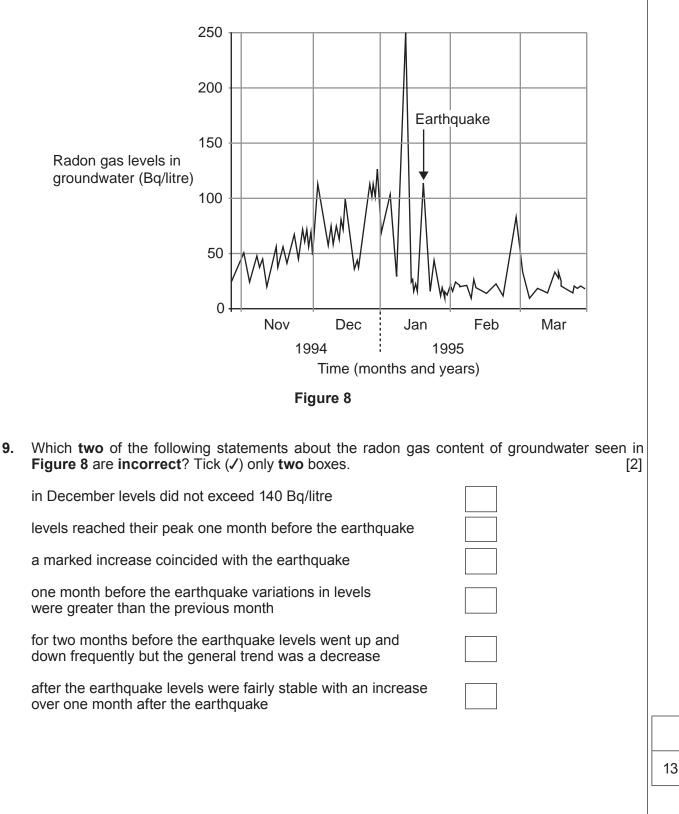

Table 2 shows the Modified Mercalli Intensity Scale.

Table 2


6. A woman living in the area shown in **Figure 6** observed that it was difficult to stand up, her chair collapsed and the chimney was broken and fell. An outside wall collapsed.

Using **Table 2**, state the intensity of the earthquake affecting the area where this woman lived on the Modified Mercalli Scale. Tick (\checkmark) only **one** box. [1]

Figure 8 shows the changes in radon gas content in groundwater before and after an earthquake on January 17th 1995 in Japan.

15

4250 010015

Examiner

Turn over.

Figure 9 is a sedimentary log.

16

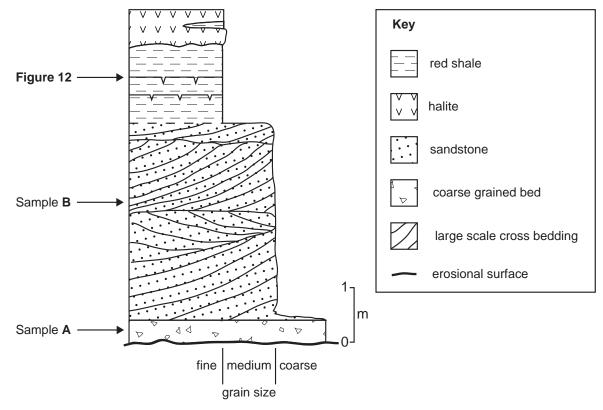


Figure 9

Figure 10 shows the texture of samples A and B taken at the locations shown in the sedimentary log in Figure 9.

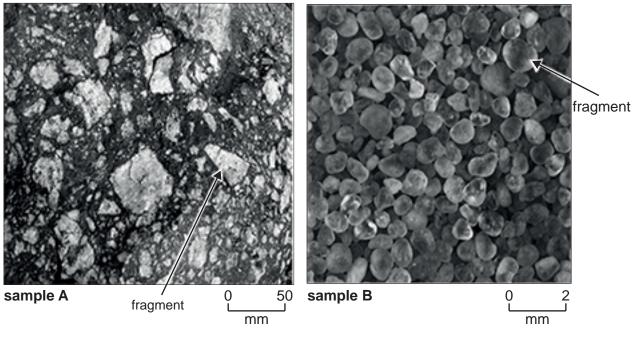


Table 3, which has been partly completed, compares the size and shape of the labelled fragments in Figure 10 and the sorting of the two samples (A and B).

Т

texture	sample A	sample B
grain size	fragment from A is coarse grained	
grain shape		fragment from B is subrounded to rounded
sorting		
	Table 3	
fragment fro	om A is rounded poorly sorted	fragment from B is fine grained
well sort	ed fragment from A is angular	fragment from B is medium grained
fragr	ment from B is coarse grained	agment from A has high sphericity

- Complete Table 3 by writing the appropriate descriptions of samples A and B in Figure 10 in their correct positions. Choose from the descriptions in the boxes below Table 3. [4]
- **2.** Name the rock type forming sample **A** in **Figure 10**. Tick (\checkmark) only **one** box.

conglomerate	
sandstone	
breccia	
shale	
limestone	

Г

Т

[1]

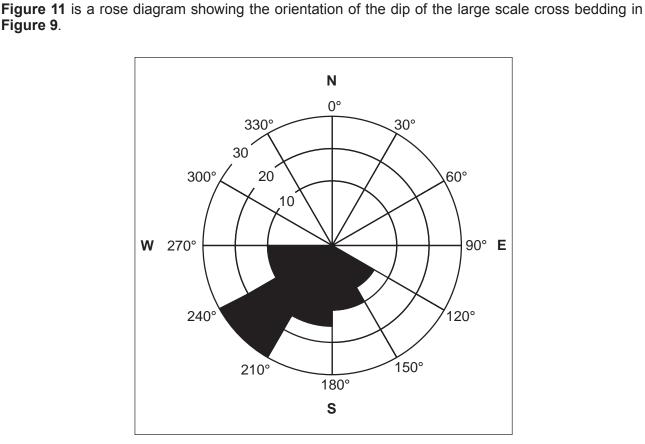
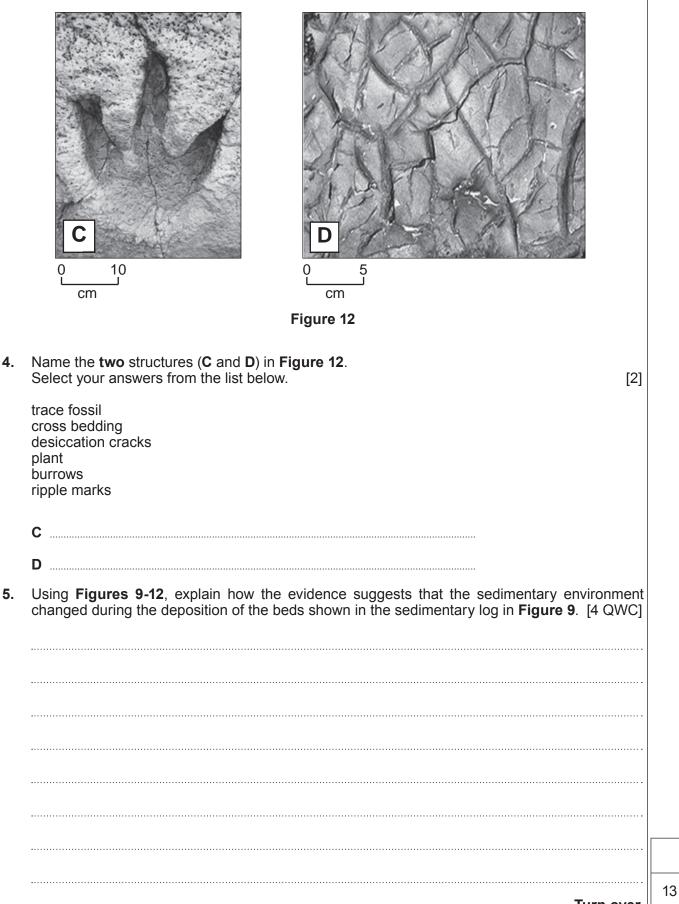
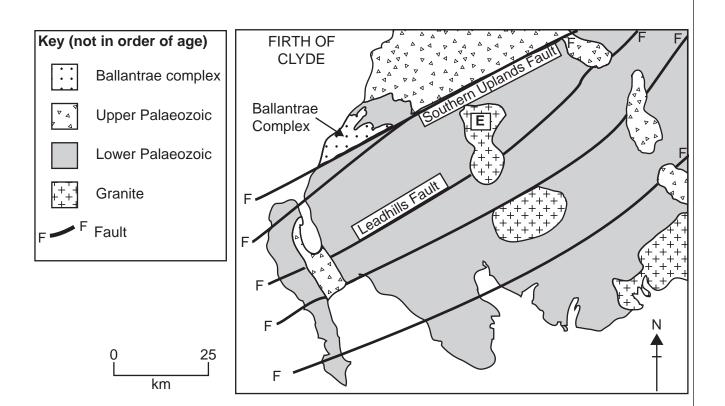


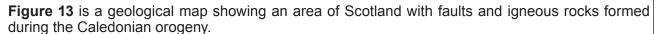
Figure 9.

3. Which two of the following statements about the formation of the large scale cross bedding are correct? Tick (\checkmark) only two boxes. [2]

formed by a river flowing from the south west formed from migrating sand ripples in between low and high tide formed by a river flowing towards the north east formed by wind blowing from the north east formed by wind blowing towards the south west formed in low energy conditions from suspension


Figure 12 shows two structures (C and D) on a bedding plane surface at the location shown in the sedimentary log in Figure 9.


19

4250 010019

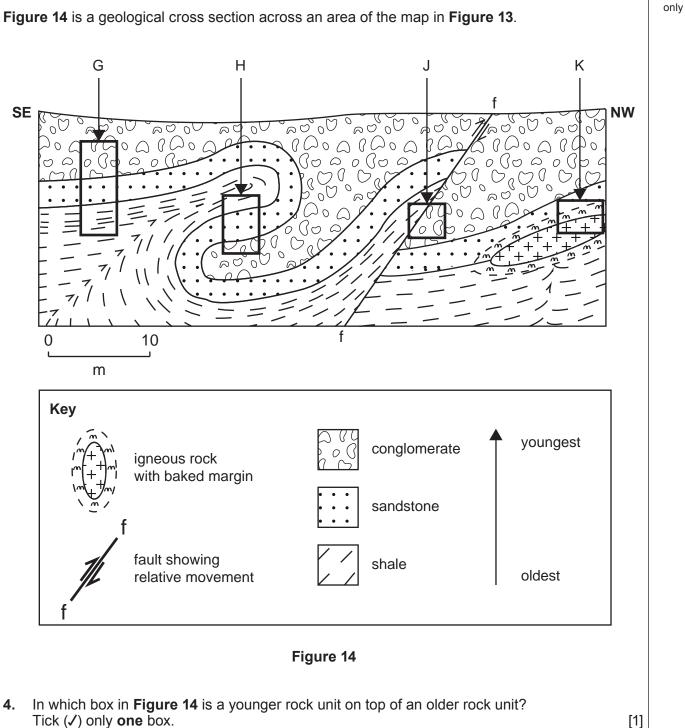
Section 4 – answer questions 1 – 9

 Which two of the following statements about the relative ages of granite E, the Leadhills Fault and the Palaeozoic rocks in Figure 13 are incorrect? Tick (✓) only two boxes. [2]

granite **E** is younger than the **Leadhills Fault**

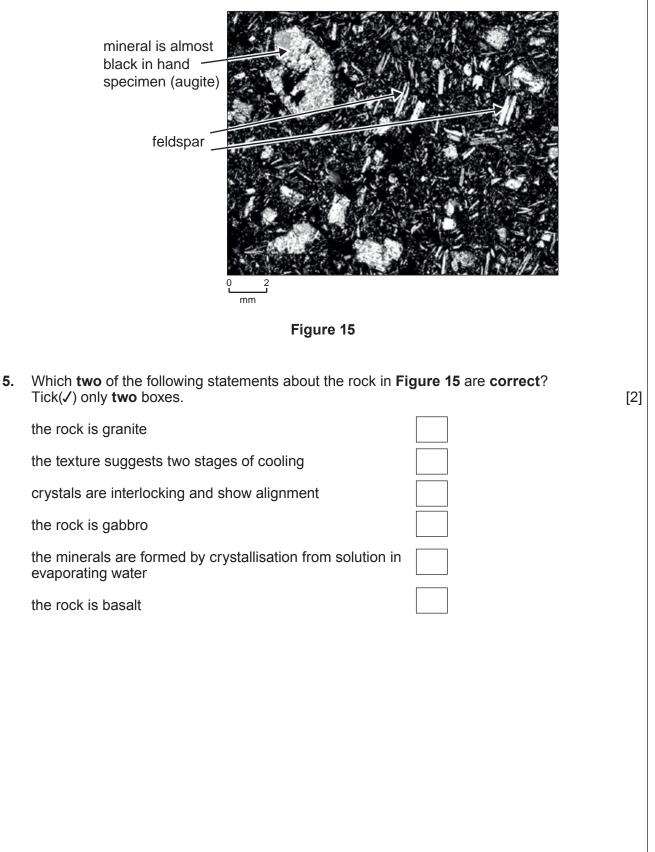
the Leadhills Fault is older than the Upper Palaeozoic rocks

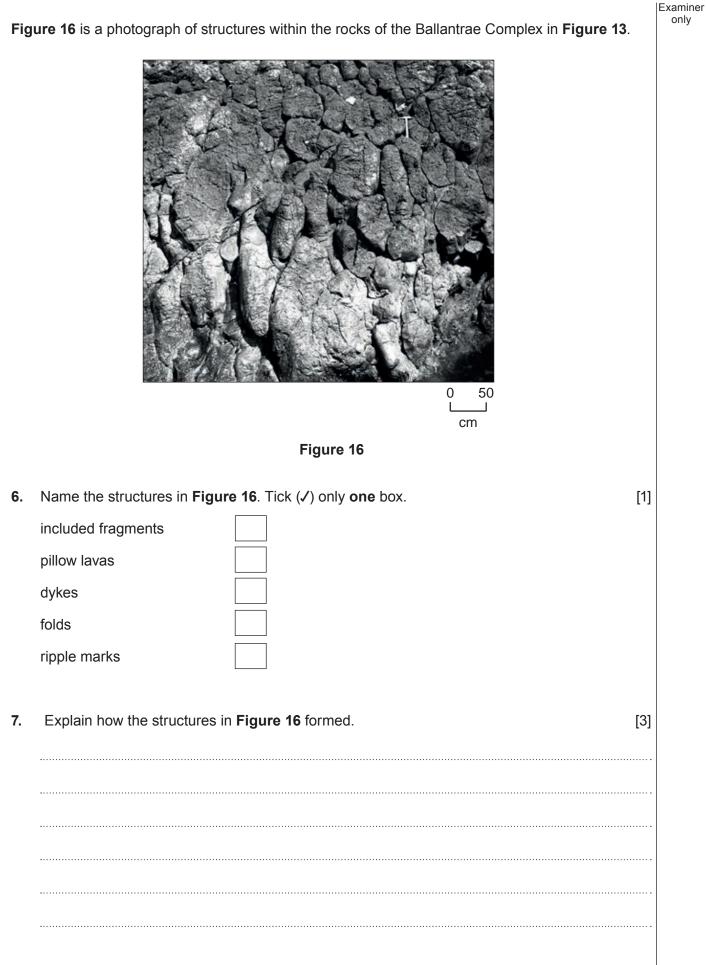
granite **E** was intruded after the Lower Palaeozoic rocks


granite E is older than the Leadhills Fault

granite **E** could have been intruded before, during or after the Upper Palaeozoic

the Leadhills Fault is older than the Lower Palaeozoic rocks


2.	Which one of the following statements best describes the probable origin of granite magmas during the Caledonian orogeny? Tick (✓) only one box. [1]	Examiner only
	partial melting of the mantle beneath the ocean ridge	
	partial melting of the mantle at a transform fault	
	complete melting of the mantle beneath an island arc	
	partial melting of continental crust beneath a fold mountain	
	complete melting of subducting ocean crust beneath a coastal mountain chain	
•		
3.	Which one of the following is not evidence for plate collision during the Caledonian orogeny? Tick (<i>J</i>) only one box. [1]	
	thrust faults	
	turbidites	
	flood basalts	
	regional metamorphism	
	fold mountain chains	



Examiner

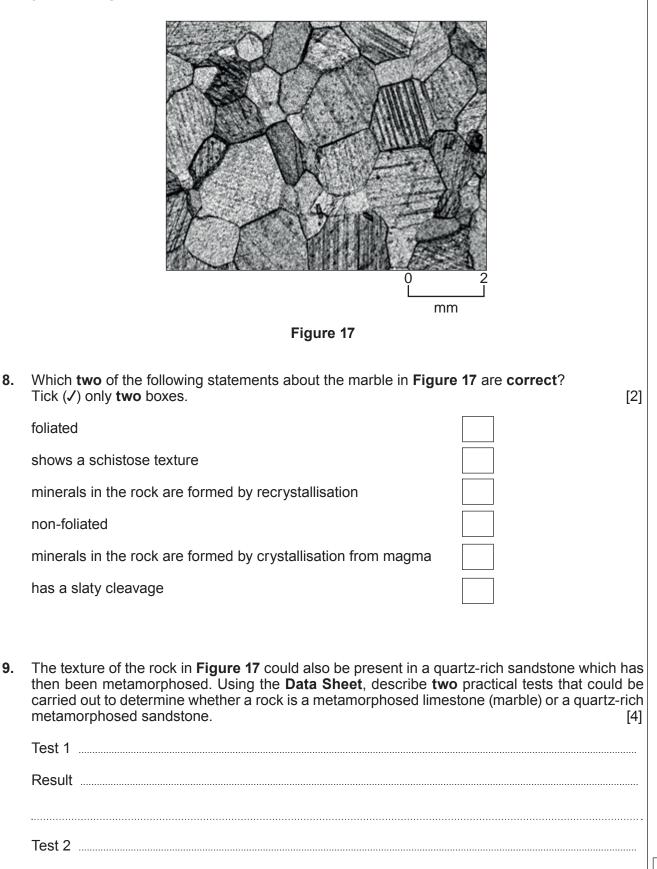


Figure 15 is a microscope view of an igneous rock forming part of the Ballantrae Complex in **Figure 13**.

Figure 17 is a microscope view of metamorphosed limestone (marble) from the metamorphic aureole only of a granite in **Figure 13**.

© WJEC CBAC Ltd.

Result

Turn over.

¹⁷

MARAMAR MAUNANA MARAMAR black shale MANANAN 10.10 のになってい schist MARAMAN unconformity not to scale Figure 18 1. Which one of the following statements about Figure 18 is correct? Tick (\checkmark) only one box. [1] four graptolite zones are present in all three boreholes as graptolites evolved there was an increase in the number of stipes the rocks are being correlated by using the principles of original horizontality and lateral continuity evolution of the graptolites allows the absolute dating of the beds in each borehole the beds in all three boreholes are the correct way up

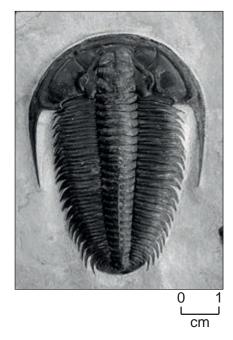
Figure 18 shows the rock types and graptolite fossils in three boreholes. Lines of correlation are shown.

borehole 3

Key

grey shale

borehole 2


borehole 1

Section 5 – answer questions 1 – 7

Which one of the following is essential for fossils such as graptolites which are used in the dating and correlation of rocks? Tick (✓) only one box. [1]

not limited to a specific environment
similar in form so that it is difficult to distinguish between them
usually live on the sea floor and are not widespread
should be found on one continent to allow world-wide correlation
found in rocks from each geological period

The fossil in Figure 19 was found in rocks in Wales.

3.	Which one of the following statements best describes the formation o fossil in Figure 19 ? Tick (<i>J</i>) only one box.	f the rock containing the [1]
	formed by the regional metamorphism of sedimentary rock deposited in a freshwater lagoon during the Cambrian Period	
	formed by exceptional preservation in the Burgess shale formation during the Jurassic Period	
	formed by deposition on the continental shelf during the Cambrian Period	
	formed from the solidification of magma under water during the Ordovician Period	
	formed by the deposition of sediment by glacial meltwater during the Pleistocene	

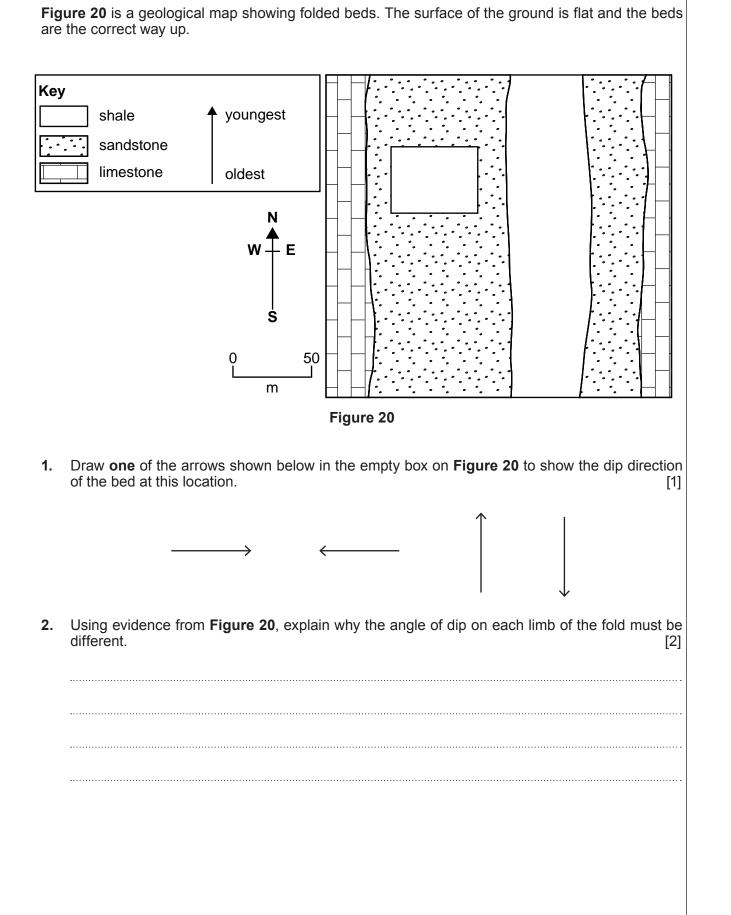
Examine only
only

4. Explain how changes in **one** morphological feature of extinct **cephalopods** can be used in the dating and correlation of rocks. [3]

Which one of the following was the earliest to appear in the fossil record? Tick (✓) only one box.

soft bodied animals such as jellyfish	
single cells such as bacteria	
multicellular organisms such as corals	
animals with hard parts such as trilobites	
sharks	

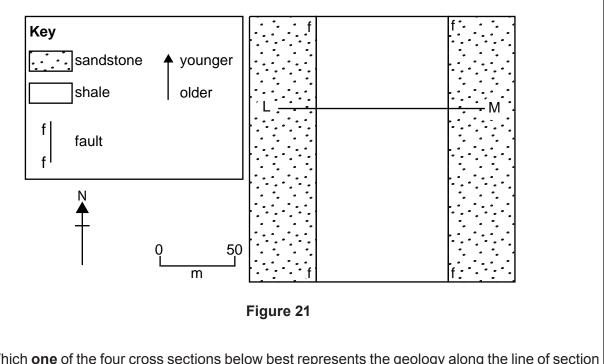
6. A very large, circular, meteorite crater near the coast of Mexico is believed to be approximately 65 million years old. Which two of the following events was the meteorite impact thought to be partly responsible for? Tick (✓) only two boxes. [2]


evolution of the earliest birds	
extinction of the amphibians	
extinction of the dinosaurs	
separation of Africa from America	
appearance of the earliest mammals	
a mass extinction event	

Examiner

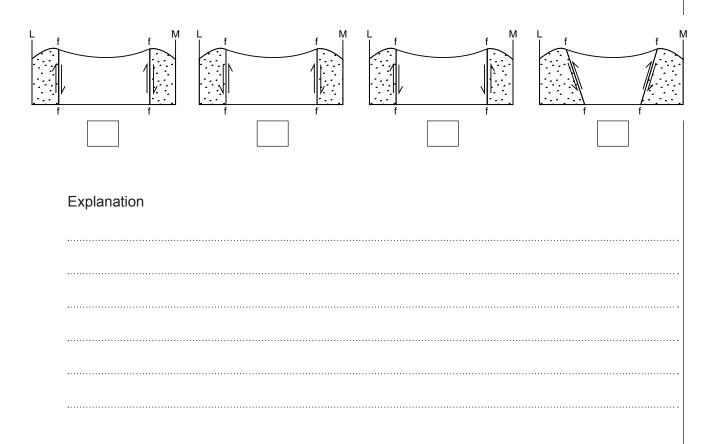
Examiner Life originated on Earth approximately 3,500 million years ago. Describe the probable environment in which life originated. [3] 7. [3] ------_____

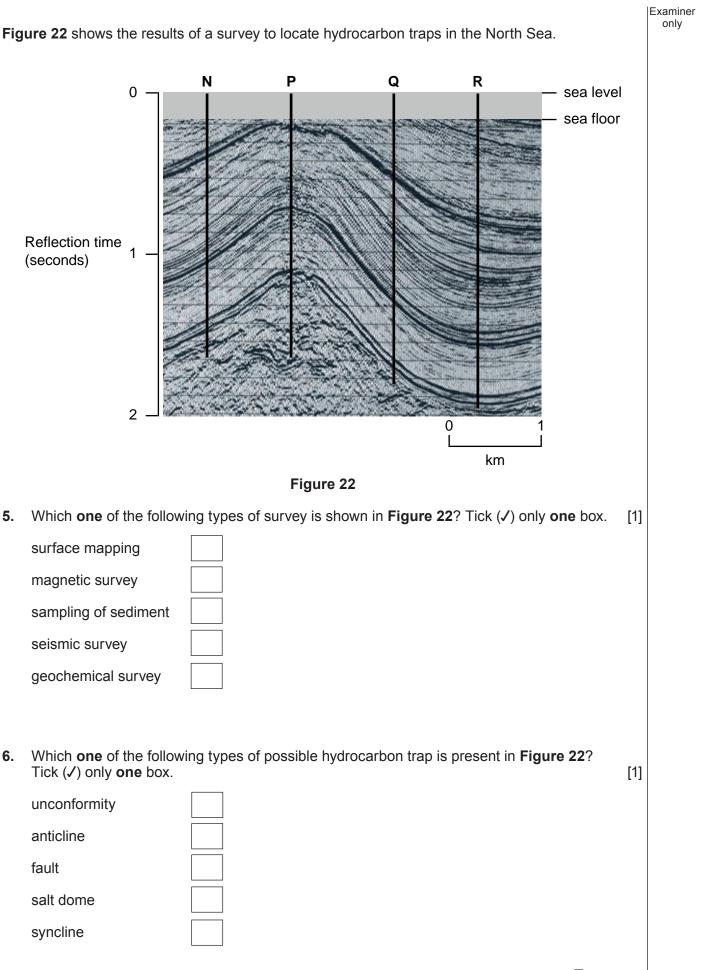
only


Section 6 – answer questions 1 – 10

© WJEC CBAC Ltd. (425

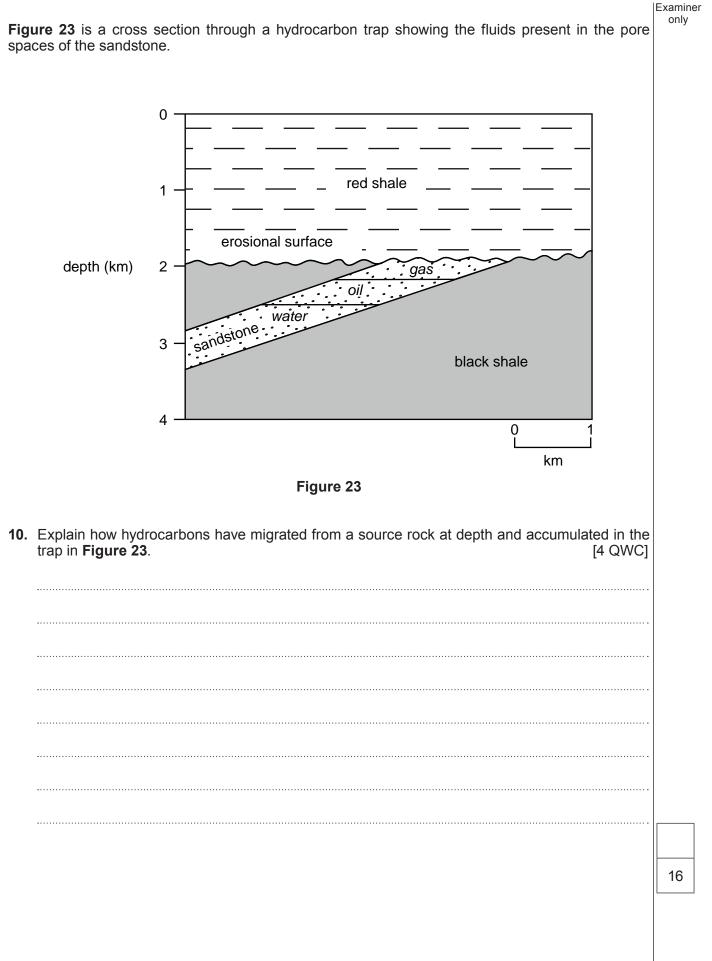
3.	Which one of the following statements about the fold in Figu Tick (✓) only one box.	ıre 20 is incorrect ? [1]	Examiner only
	the fold is a syncline		
	the trend of the axial plane trace of the fold is N-S		
	shale forms the core of the fold		
	the axial plane of the fold dips towards the west		
	the directions of compression are from the east and west		


Figure 21 is a geological map showing two vertical dip-slip faults.

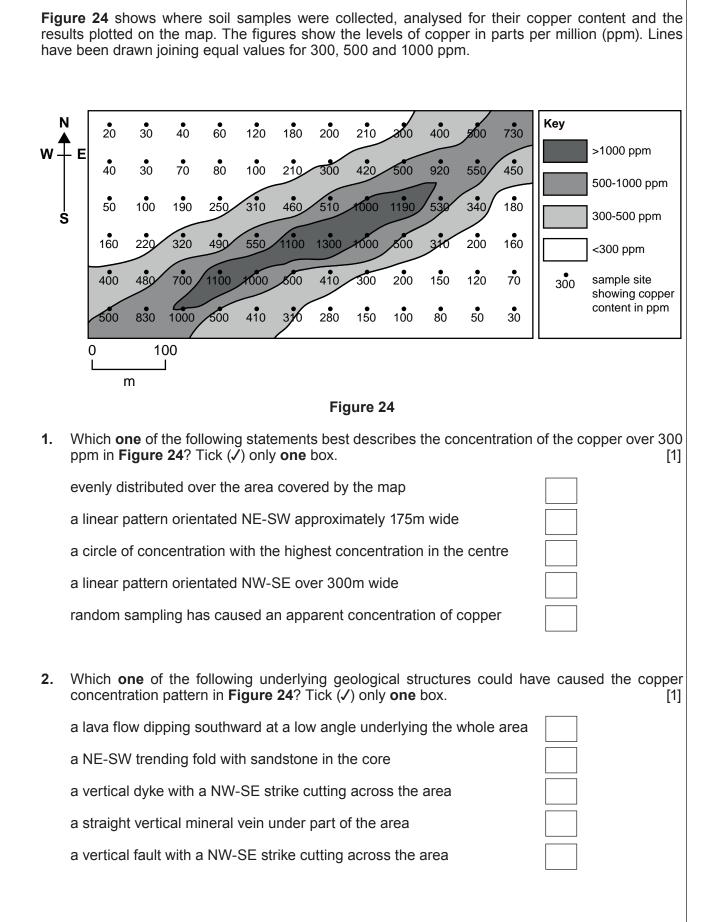

32

Which **one** of the four cross sections below best represents the geology along the line of section L - M in Figure 21? Tick (J) only **one** box and explain your answer. [3] 4.

The half arrows show relative movement along each fault.



Examiner


Turn over.

7.	At which one of the locations in Figure 22 (N , P , Q or R) would it be best to drill a test well to establish whether hydrocarbons are present at depth? Tick (\checkmark) only one box. [1]	
	Ν	
	P	
	Q	
	R	
8.	Some oil wells in the North Sea can extract up to 60% of the oil whilst other wells can only extract 30%. Which one of the following could explain the higher extraction rate? Tick (\checkmark) only one box. [1]	
	reservoir rock has lower porosity	
	reservoir rock is more poorly sorted	
	reservoir rock is less well cemented	
	reservoir rock is less permeable	
	grain shapes in the reservoir rock are more angular	
9.	Which one of the following environments will result in the formation of a suitable oil source rock ? Tick (<i>J</i>) only one box. [1]	
	deep sea conditions near the continental slope affected by turbidity currents	
	a warm sea inhabited by corals in which limestone is forming	
	high energy shore line conditions which preserve organic matter in a conglomerate	
	organic-rich sea in a tropical climate which later evaporates	
	low energy organic-rich conditions, often anaerobic	

(4250-01)

Section 7 – answer questions 1 – 5

Examiner only Copper is a trace element in the crust making up 0.005% of the Earth's crust. A copper ore 3. contains an average of 1% copper. Calculate by how much the copper in the ore has been concentrated above the value for the Earth's crust. Show your calculation below. [2] Calculation concentration After mining, soils are often contaminated by metallic elements. Describe one way in which the 4. metals in the soil can be returned to safe levels. [2]

10

After quarrying and mining, quarries can be put to other uses. **Figure 25** is a geological cross section showing two disused limestone quarries (**S** and **T**), which are being considered for the disposal of domestic waste.

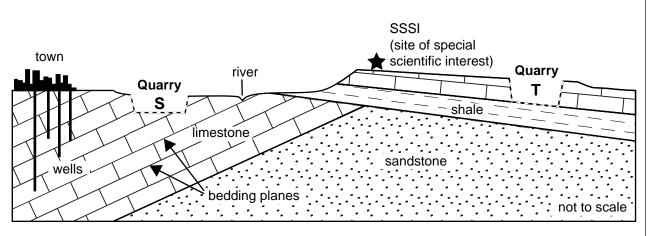


Figure 25

5. State which quarry (S or T) in Figure 25 you consider to be the most suitable site for the disposal of domestic waste and explain the **geological** reasons involved in your choice. [4]

Quarry S or T	
Geological reasons	
· ······	

END OF PAPER

BLANK PAGE