
GCSE Science - Chemistry 2

2.2 - Atomic and mass numbers

Element - A substance that cannot be broken down into a simpler substance by chemical means. A basic building block of all substances, made up of only one type of atom.

Compound - A substance made of two or more different atoms, chemically bonded together. Can have completely different properties to the elements making it up.

Mixtures - A substance made of to or more elements or compounds mixed together and not chemically bonded.

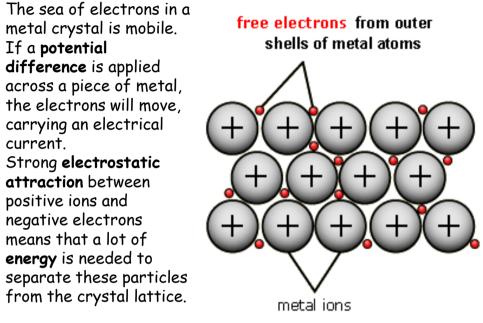
	charge	mass	position	Mass number tells you the	across a piece
proton	positive (+)	1	in nucleus	total mass of the atom 23	the electrons carrying an e
neutron	neutral	1	in nucleus	Atomic number tells you the 11 Na	current. Strong elect
electron	negative (-)	0	in shells	number of protons in an atom	attraction be
Atomic number = number of protons = number of electrons Mass number = number of protons + number of neutrons <u>Example</u> - sodium Atomic number = 11 Number of protons = 11, number of electrons = 11 Mass number = 23 Number of neutrons = 23 - 11 = 12				The relative atomic mass (Ar) of an atom is equal to its mass number. The relative molecular mass (Mr) is the total mass of a molecule. Example The Mr of CO_2 would be; Ar of Carbon \rightarrow 12 $2 \times Ar$ of Oxygen \rightarrow 2 x 16 = 32 32 + 12 = 44	positive ions an negative electr means that a lo energy is neede separate these from the cryst
<u>2.4 - Nan</u>	<u>oscale particles</u>			<u>2.5 - Acids & Bases</u>	<u>2.6 - Neu</u>
Nano-sized silver particles are antibacterial, antiviral and antifungal and that they are used in plasters, antiseptic sprays, refrigerator linings, socks, deodorant sprays and so on. Nano-sized titanium dioxide particles are used in some sun screens			septic sprays, so on. some sun screens	Acid - a substance that produces H ⁺ ions in water Base - a substance that neutralises an acid, but does not dissolve in water Alkali - a base dissolved in water	Acids react carbonates These reac
as they absorb and reflect UV light but are also transparent so more appealing to consumers. Self-cleaning glass is coated with nano-scale titanium dioxide particles. These catalyse the breakdown of dirt in the presence of UV light and also cause water to spread out in a thin film, rather than forming droplets on the surface. The combined effort of sunshine and rainwater cleans the windows!				Acids & alkalis are classified using the pH scale. The pH scale is a measure of the hydrogen ions (H ⁺) in the	General che hydrogen io H ⁺ _(aq) + OH
				substance. Acids contain hydrogen ions (H ⁺)s in water - the higher the concentration of H ⁺ (measured in mol/dm ³), the lower the pH and the stronger the acid.	Neutralisati acid + base examples
<u>Risks of Nar</u>	no-scale Particle			Alkalis contain hydroxide ions (OH ⁻) in water - the higher the concentration of OH ⁺ (measured in mol/dm ³), the higher the pH and the stronger the alkali.	sulphuric act water H ₂ SO _{4(aq)} + M
cause no dar long-term ef	als currently used h nage to individuals o ffects are as yet un	or the environment hknown. Some peop	, but that their le have expressed	Acids - pH lower than 7 Neutral solution - pH 7 Alkalis - pH higher than 7	hydrochloria water HCl _(aq) + NaC
concern that nano-scale silver (deodorants) and titanium dioxide (sun screens) are applied to the skin and can therefore be easily				1 2 3 4 5 6 7 8 9 10 11 12 13 14	Acids also re

trong acids

weak alkalis

strong alkalis

2.4 - Nanoscale particles


Risks of Nano-scale Particle

Nanomaterials currently used have cause no damage to individuals or long-term effects are as yet unkn concern that nano-scale silver (dec (sun screens) are applied to the sl absorbed into the body. While it has been shown that these uses are safe in the short term, there is no certainty that exposure over many years will not result in problems.

Acids also react with metal carbonates to form a salt and water, but also produce carbon dioxide. These reactions effervesce - they produce bubbles of gas, carbon dioxide.

2.3 - Properties of metals

Strong, high melting points, electrical conductivity, good conductors of heat, malleable ect. Metallic bonding-layers of atoms, sea of electrons. Metal crystals are made up of positive metal ions surrounded by a sea of negative electrons.

sation

metal oxides, hydroxide (both bases) and rm a salt and neutral water molecules. are exothermic - they give out heat.

```
reaction in terms if ions
ydroxide ions → water
 H_2O_{(1)}
```

action lt + water

nagnesium oxide \rightarrow magnesium sulphate +

 $H_{s} \rightarrow MgSO_{4(aa)} + H_2O_{(1)}$

+ sodium hydroxide \rightarrow sodium chloride +

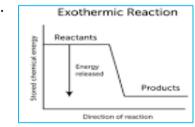
 \rightarrow NaCl_(ag) + H₂O₍₁₎

GCSE Science - Chemistry 2

2.7 - Reactivity of metals Most reactive	2.8 - Transition Metals	<u>2.9 - Chem</u>
Reactive metals such as aluminium are extracted by electrolysis, while a less- reactive metal such as iron may be extracted by reduction with carbon. Gold, because it is so unreactive, is found as the native metal and not as a compound, so it does not need to be chemically separated. <u>Metal Ores</u> Ores are naturally occurring rocks that contain metal or metal compounds in sufficient amounts to make it worthwhile extracting them. <u>Alloys</u> An alloy is a mixture of two or more elements, where at least one element is a metal. Many alloys are mixtures of two or more metals. Steel Carbon is removed from molten iron by blowing oxygen into it. The oxygen reacts with the carbon, producing carbon monoxide and carbon dioxide, which escape from the molten metal. Enough oxygen is used to achieve steel with the desired carbon content.	The transition metals are placed in the centre of the periodic table, between groups 2 and 3. The transition metals have the following properties in common: • form coloured compounds. • good conductors of heat and electricity. • can be hammered or bent into shape easily. • less reactive than alkali metals such as sodium. • have high melting points - but mercury is a liquid at room • temperature. • usually hard and tough. • high densities. Many transition metals are useful catalysts (e.g. iron in the manufacture of ammonia, platinum in catalytic converters). They can form more than one type of ion e.g. Fe2+/Fe3+ and their compounds are often coloured.	Exothermic r the form of k With exother being made. In an exother less than the the form of k Endothermic the form of k With endother is being broke In an endother greater than been taken in
2.10 - Transition Metals	2.11 - Crude oil	<u>2.12 - Com</u> t
Calculating energy changesThe energy changes in a chemical reaction can be calculated in terms of the energy needed to break bonds and that is produced in forming bonds.Combustion is a reaction that involves burning a fuel in oxygen. The combustion reaction involves breaking bonds in the reactants and forming bonds in the products. Consider methane as an example: $CH_4 + 2O_2$ $CO_2 + 2H_2O$ The breaking the bond is ENDOTHERMIC. This means it requires energy to be put in. In this example, 4 C-H bonds and 2 O = O bonds are broken.The formation of a bond is EXOTHERMIC. This means it gives out energy. In this example, 2 C = O bonds and 4 O - H bonds are formed.The difference between the total energy needed to break all the bonds and the total energy given out when new bonds are formed tells us if the overall reaction is endothermic or exothermic.	Crude oil is a complex mixture of hydrocarbons that was formed over millions of years from the remains of simple marine organisms. Fractional distillation of crude oil separates out fractions which can be used in a variety of ways. The fractions contain mixtures of hydrocarbons (alkanes) with similar boiling points. The compounds in the fractions have decreasing chain lengths and lower boiling points as you go up the fractionating column. The fractions with low boiling points and low viscosity are the most useful as fuels. The oil industry has global economic and political importance and social and environmental impacts.	Hydrocarbor with oxygen. The combust carbon dioxid Hydrogen ha For example however it is potentially m The fire tric for fire and prevention.

mical reactions and energy

<u>reactions</u> are reactions that give out energy in heat.


ermic reactions this means a chemical bond is

nermic reaction, the energy of the products is ne energy of the reactants, because energy, in f heat, has been given to the surroundings.

<u>c reactions</u> are reactions that take in energy in ^theat.

hermic reactions this means that a chemical bond when.

thermic reaction, the energy of the products is an that of the reactants, because energy has in from the surroundings.

<u>nbustion</u>

oons and other fuels undergo combustion en.

istion reaction of hydrogen produces no xide.

has advantages and disadvantages as a fuel. le, it only produces water when it burns, is very flammable and can explode so is more dangerous than oil based fuels.

riangle indicates the components required Id is used in fire fighting and fire

