

Personalised Learning Checklist WJEC (Double Award) Chemistry 2 – Unit 5: Topics 5.1-5.5

Topic	Student Checklist	R	Α	G
	Describe the properties of metals, ionic compounds, simple molecular covalent substances			
	and giant covalent substances.			
	Apply the knowledge of the 'sea' of electrons/lattice of positive ions structural model for			
S	metals in explaining their physical properties.			
Ë	Demonstrate the knowledge of electronic structure in explaining how ionic bonding takes			
PER	place (and how this is represented using dot and cross diagrams).			
<u>S</u>	Apply the knowledge of the accepted structural model for giant ionic structures in			
<u>-</u>	explaining the physical properties of ionic compounds.			
Ž	Show understanding of electronic structure, and be able to explain how covalent bonds			
Æ/	are formed (and how this is represented using dot and cross diagrams).			
Ę	Show understanding of the intermolecular bonding structural model for simple molecular			
ַ	structures, and be able to explain the physical properties of simple molecular substances.			
₹ E	Demonstrate knowledge of the properties of diamond, graphite, fullerenes, carbon nano-			
S,	tubes and graphene and how these are explained in terms of structure and bonding.			
ž	Apply knowledge of individual atoms not having the same properties as bulk materials as			
2	demonstrated by diamond, graphite, fullerenes, carbon nano-tubes and graphene.			
Topic 5.1 BONDING, STRUCTURE AND PROPERTIES	Apply knowledge of nano-scale silver particles exhibiting properties not seen in bulk silver.			
5.1	Show understanding of the properties and uses of nano-scale particles of silver and			
pic	titanium dioxide.			
2	Describe the possible risks associated with the use of nano-scale particles of silver and			
	titanium dioxide, and of potential future developments in nanoscience .			
	Describe the properties and uses of smart materials including thermochromic pigments,			
	photochromic pigments, polymer gels, shape memory alloys and shape memory polymers.			
	Demonstrate an understanding of substances as acidic, alkaline or neutral in terms of the			
	pH scale, including acid/alkali strength			
	Apply knowledge of solutions of acids containing hydrogen ions and alkalis containing			
	hydroxide ions			
LTS	Apply knowledge of the reactions of dilute acids with metals and how these relate to the			
SALTS	metals' position in the reactivity series			
ND	Describe the neutralisation of dilute acids with bases (including alkalis) and carbonates			
ES A	HT: Explain neutralisation as the reaction of hydrogen ions with hydroxide ions to form			
3AS	water			
S, E	$H+(aq) + OH-(aq) \rightarrow H_2O(I)$			
ACIDS, BASES ANI	Describe the acid/carbonate reaction as a test for acidic substances and CO ₃ ²⁻ ion			
	Have knowledge of the preparation of crystals of soluble salts, such as copper(II) sulfate,			
Topic 5.2	from insoluble bases and carbonates			
ĕ	Understand the names of the salts formed by hydrochloric acid, nitric acid and sulfuric acid			

	Describe the test used to identify SO ₄ ²⁻ ions		
	Describe the test used to identify 504 TOTIS		
	Understand and apply knowledge of titration as a method to prepare solutions of soluble		
	salts and to determine relative concentrations of solutions of acids/alkalis		
	Describe ores found in the Earth's crust as the source of most metals and that these		
	metals can be extracted using chemical reactions		
	Understand some unreactive metals (e.g. gold) being found in their native form and that		
	the difficulty involved in extracting metals increases as their reactivity increases		
7	Describe the relative reactivities of metals as demonstrated by displacement (e.g. iron nail		
<u> </u>	in copper(II) chloride solution) and competition reactions (e.g. thermit reaction)		
METALS AND THEIR EXTRACTION	Describe reduction and oxidation in terms of removal or gain of oxygen		
TR/	Besonde reduction and extends of removal of gain of extygen		
EX	Describe the industrial extraction of iron in the blast furnace, including the combustion,		
EIR	reduction, decomposition and neutralisation reactions		
王	Describe electrolysis of molten ionic compounds e.g. lead(II) bromide (including electrode		
9	equations)		
A	Explain reduction and oxidation in terms of gain or loss of electrons		
ALS			
ET.	Describe the industrial extraction of aluminium using electrolysis, including the use of		
Σ	cryolite to dissolve alumina	<u> </u>	
ω	Describe and apply knowledge of the properties and uses of iron (steel), aluminium,		
Topic 5.3	copper and titanium	-	
opi	Describe the general properties of transition metals, including their ability to form ions		
_	with different charges	-	
	Apply knowledge of an alloy being a mixture made by mixing molten metals, whose		
	properties can be modified by changing its composition		
	Describe factors affecting economic viability and sustainability of extraction processes e.g.		
	siting of plants, fuel and energy costs, greenhouse emissions and recycling	-	
}5	Explain exothermic and endothermic reactions in terms of temperature change and		
AL ER	energy transfer to or from the surroundings		
CHEMICAL AND ENERGY			
필요	Describe and apply knowledge of energy profiles for exothermic and endothermic		
C A	reactions		
Topic 5.4 REACTIONS			
pic XIC	Explain the activation energy as the energy needed for a reaction to occur		
To	Explain the use of bond energy data to calculate overall energy change for a reaction and		
2	to identify whether it is exothermic or endothermic		
	Describe crude oil as a complex mixture of hydrocarbons that was formed over millions of		
9	years from the remains of simple marine organisms		
A (Describe the fractional distillation of crude oil		
ELS VDS			1
윤호	Apply knowledge of fractions as containing mixtures of hydrocarbons (alkanes) with		
JL, APC	similar boiling points		
E O	Apply knowledge of the trends in properties of fractions with increasing chain length and		
: 5.5 CRUDE OIL, FUELS CARBON COMPOUNDS	the effect on their usefulness as fuels		
CR BOI	Apply knowledge of the global economic and political importance and social and		
5.5 ARI	environmental impact of the oil industry		
) je .	Describe the combustion reactions of hydrocarbons and other fuels		
Topic 5.5 CRUDE OIL, FUELS AND CARBON COMPOUNDS	Explain how to determine experimentally the energy per gram released by a burning fuel		
	Explain now to determine experimentally the energy per grain released by a building fuer		

Describe the combustion reaction of hydrogen and its use as an energy source including it	S
advantages and disadvantages as a fuel	
Apply knowledge of the fire triangle in fire-fighting and fire prevention	
Describe the cracking of some fractions to produce smaller and more useful hydrocarbon	
molecules, including monomers (alkenes) which can be used to make plastics	
Apply the general formula C_nH_{2n+2} for alkanes and C_nH_{2n} for alkenes	
Understand and apply the names and molecular and structural formulae for simple	
alkanes and alkenes	
HT Explain isomerism in more complex alkanes and alkenes	
Describe the addition reactions of alkenes with hydrogen and bromine and the use of	
bromine water in testing for alkenes	
Describe the addition polymerisation of ethene and other monomers to produce	
Describe the addition polymerisation of ethene and other monomers to produce polythene, poly(propene), poly(vinylchloride) and poly(tetrafluoroethene)	
polythene, poly(propene), poly(vinylchloride) and poly(tetrafluoroethene)	
polythene, poly(propene), poly(vinylchloride) and poly(tetrafluoroethene) Describe the general properties of plastics and the uses of polythene, poly(propene),	
polythene, poly(propene), poly(vinylchloride) and poly(tetrafluoroethene) Describe the general properties of plastics and the uses of polythene, poly(propene), poly(vinylchloride) and poly(tetrafluoroethene)	
polythene, poly(propene), poly(vinylchloride) and poly(tetrafluoroethene) Describe the general properties of plastics and the uses of polythene, poly(propene), poly(vinylchloride) and poly(tetrafluoroethene) Apply knowledge of the environmental issues relating to the disposal of plastics, in terms	