

Personalised Learning Checklist WJEC (Triple Award) Chemistry 2 Unit 2: Topics 2.1 -2.6

opic	Student Checklist	R	Α	G
	Describe the properties of metals, ionic compounds, simple molecular covalent substances			
	and giant covalent substances.			
	Apply the knowledge of the 'sea' of electrons/lattice of positive ions structural model for			
Ņ	metals in explaining their physical properties.			
	Demonstrate the knowledge of electronic structure in explaining how ionic bonding takes			
μ. Έ	place (and how this is represented using dot and cross diagrams).			
2	Apply the knowledge of the accepted structural model for giant ionic structures in			
	explaining the physical properties of ionic compounds.			
	Show understanding of electronic structure, and be able to explain how covalent bonds			
ļ	are formed (and how this is represented using dot and cross diagrams).			
5	Show understanding of the intermolecular bonding structural model for simple molecular			
	structures, and be able to explain the physical properties of simple molecular substances.			
	Demonstrate knowledge of the properties of diamond, graphite, fullerenes, carbon nano-			
n n	tubes and graphene and how these are explained in terms of structure and bonding.			
	Apply knowledge of individual atoms not having the same properties as bulk materials as			
2	demonstrated by diamond, graphite, fullerenes, carbon nano-tubes and graphene.			
2	Apply knowledge of nano-scale silver particles exhibiting properties not seen in bulk silver.			
I ODIC 2.1 BUNDING, SI KUCI UKE AND PROPERTIES	Show understanding of the properties and uses of nano-scale particles of silver and			
do	titanium dioxide.			<u> </u>
-	Describe the possible risks associated with the use of nano-scale particles of silver and			
	titanium dioxide, and of potential future developments in nanoscience .		-	<u> </u>
	Describe the properties and uses of smart materials including thermochromic pigments,			
	photochromic pigments, polymer gels, shape memory alloys and shape memory polymers.			
BASES ANU SALIS	Demonstrate an understanding of substances as acidic, alkaline or neutral in terms of the pH scale, including acid/alkali strength			
2	Apply knowledge of solutions of acids containing hydrogen ions and alkalis containing			-
	hydroxide ions			
S.	Apply knowledge of the reactions of dilute acids with metals and how these relate to the			1
Ā	metals' position in the reactivity series			
•	Describe the neutralisation of dilute acids with bases (including alkalis) and carbonates			
ACIDS	HT: Explain neutralisation as the reaction of hydrogen ions with hydroxide ions to form			
N	water			
1 opic 2.2	$H+(aq) + OH-(aq) \rightarrow H_2O(I)$			
ă	Describe the acid/carbonate reaction as a test for acidic substances and CO ₃ ²⁻ ion			

-	Have knowledge of the preparation of crystals of soluble salts, such as copper(II) sulfate,		
	from insoluble bases and carbonates		
	Understand the names of the salts formed by hydrochloric acid, nitric acid and sulfuric acid		
	Describe the test used to identify SO_4^{2-} ions		
	Understand and apply knowledge of titration as a method to prepare solutions of soluble		
	salts and to determine relative concentrations of solutions of acids/alkalis		
-	HT: Describe the concentration of a solution in mol dm ⁻³		
	HT: Apply calculations involving neutralisation reactions in solution, using a balanced chemical equation		
	Explain the distinction between the description of acids as dilute or concentrated (amount		
	of substance) and strong or weak (degree of ionisation)		
	Describe the similarities and differences in the reactions of strong and weak acids e.g.		
	hydrochloric acid and ethanoic acid		
	Describe the process of the preparation of insoluble salts by precipitation reactions		
	Describe ores found in the Earth's crust as the source of most metals and that these		
	metals can be extracted using chemical reactions		
	Understand some unreactive metals (e.g. gold) being found in their native form and that		
	the difficulty involved in extracting metals increases as their reactivity increases		
	Describe the relative reactivities of metals as demonstrated by displacement (e.g. iron nail		
	in copper(II) chloride solution) and competition reactions (e.g. thermit reaction)		
	Describe reduction and oxidation in terms of removal or gain of oxygen		
	Describe the industrial extraction of iron in the blast furnace, including the combustion,		
z	reduction, decomposition and neutralisation reactions		
2	Describe electrolysis of molten ionic compounds e.g. lead(II) bromide (including electrode		
U A	equations)		
D THEIR EXTRACTION	Explain reduction and oxidation in terms of gain or loss of electrons		
R	Describe the industrial extraction of aluminium using electrolysis, including the use of		
Ξ	cryolite to dissolve alumina		
	Describe and apply knowledge of the properties and uses of iron (steel), aluminium,		
AN	copper and titanium		
METALS AN	Describe the general properties of transition metals, including their ability to form ions		
ETA	with different charges		
Σ	Apply knowledge of an alloy being a mixture made by mixing molten metals, whose		
m	properties can be modified by changing its composition		
Topic 2.3	Describe factors affecting economic viability and sustainability of extraction processes e.g.		
pido	siting of plants, fuel and energy costs, greenhouse emissions and recycling		
Ĕ	Apply knowledge of electrolysis of molten ionic compounds e.g. lead(II) bromide (including		
-	electrode equations)		
	Explain the identification of Cu2+, Fe2+ and Fe3+ ions by their precipitation reactions with		
	aqueous OH–		
	Apply knowledge of an alloy being a mixture made by mixing molten metals, whose		
	properties can be modified by changing its composition		
	Understand the electrolysis of water (including electrode equations)		
	Apply knowledge of electrolysis of aqueous solutions such as copper(II) chloride (including		
	electrode equations)		
		I	

	Describe factors affecting economic viability and sustainability of extraction processes e.g.		
	siting of plants, fuel and energy costs, greenhouse emissions and recycling		
	HT : Explain electrolysis of aqueous solutions involving competing ions such as sodium		
	chloride (including electrode equations		
	Describe the use of electrolysis in electroplating, purification of copper and the		
	manufacture of sodium hydroxide (and hydrogen gas and chlorine gas)		
~	Explain exothermic and endothermic reactions in terms of temperature change and		
RG F	energy transfer to or from the surroundings		
N R			
Σü	Describe and apply knowledge of energy profiles for exothermic and endothermic		
A CHI	reactions		
.4 . IS /			
ic 2 ION	Explain the activation energy as the energy needed for a reaction to occur		
Topic 2.4 CHEMICAL REACTIONS AND ENERGY			
L T	Explain the use of bond energy data to calculate overall energy change for a reaction and		
	to identify whether it is exothermic or endothermic		
	Describe crude oil as a complex mixture of hydrocarbons that was formed over millions of		
	years from the remains of simple marine organisms		
	Describe the fractional distillation of crude oil		
	Apply knowledge of fractions as containing mixtures of hydrocarbons (alkanes) with		
	similar boiling points		
	Apply knowledge of the trends in properties of fractions with increasing chain length and		
7	the effect on their usefulness as fuels		
TR			
AND ORGANIC CHEMISTRY	Apply knowledge of the global economic and political importance and social and		
Ē	environmental impact of the oil industry		
00	Describe the combustion reactions of hydrocarbons and other fuels		
N			
l de			
ō	Explain how to determine experimentally the energy per gram released by a burning fuel		
N N			
	Describe the combustion reaction of hydrogen and its use as an energy source including its		
Е,	advantages and disadvantages as a fuel		
Topic 2.5 CRUDE OIL, FUELS	Apply knowledge of the fire triangle in fire-fighting and fire prevention		
DE			
RU			
20	Describe the cracking of some fractions to produce smaller and more useful hydrocarbon		
5.	molecules, including monomers (alkenes) which can be used to make plastics		
pid	Apply the general formula C_nH_{2n+2} for alkanes and C_nH_{2n} for alkenes		
Ĕ			
	Understand and apply the names and molecular and structural formulae for simple		
	alkanes and alkenes		
	HT Explain isomerism in more complex alkanes and alkenes		
	Describe the addition reactions of alkenes with hydrogen and bromine and the use of		
	bromine water in testing for alkenes		
	Describe the addition polymerisation of ethene and other monomers to produce	╞──┤	
	polythene, poly(propene), poly(vinylchloride) and poly(tetrafluoroethene)		
1	[1	1

	Describe the general properties of plastics and the uses of polythene, poly(propene), poly(vinylchloride) and poly(tetrafluoroethene)		
	Apply knowledge of the environmental issues relating to the disposal of plastics, in terms	┼───┘	
	of their non-biodegradability, increasing pressure on landfill for waste disposal, and how		
	recycling addresses these issues as well as the need to carefully manage the use of finite natural resources such as crude oil		
	Explain how ethanol (an alcohol) is made from sugars by fermentation using yeast		
	Describe the use of potassium dichromate(VI) in testing for alcohols		
	Apply knowledge on the use of ethanol in alcoholic drinks and the social and economic impact of these drinks		
	Describe the uses of ethanol as a solvent and as a fuel and the social, economic and		
	environmental factors that affect the development of bioethanol fuel		
	Apply knowledge of the names and molecular and structural formulae for alcohols,		
	including positional isomers		
	Describe the microbial oxidation of ethanol to ethanoic acid (a carboxylic acid)		
	Apply knowledge of the use of infrared spectroscopy to identify the presence of certain		
	bonds in organic molecules thereby indicating whether they may be alkanes, alkenes,		
	alcohols or carboxylic acids		
	Explain what is meant by a reversible reaction		
AL	Describe the production of ammonia by the reversible reaction of nitrogen and ammonia		
ALS	in the Haber process		
	Explain the factors involved in choosing conditions to ensure the most economical		
	production of ammonia (Le Chatelier's principle not required)		
ERSIBLE REACTIONS, INDUSTRIAL AND IMPORTANT CHEMICALS	Describe the test used to identify ammonia gas		
	Describe the production of sulfuric acid by the contact process; a three-stage process		
BR1	including the reversible formation of sulfur trioxide		
AP(Apply knowledge of the broad range of uses of sulfuric acid, including in the production of		
BLE	fertilisers, paints, dyes, fibres, plastics and detergent		
SII	Describe concentrated sulfuric acid as a dehydrating agent in its reaction with sugar and		
	hydrated copper(II) sulfate		
SSE	Describe the production of nitrogenous fertilisers such as ammonium sulfate and		
2.6 DCE	ammonium nitrate by neutralisation of ammonia solution		
Topic 2.6 REVI PROCESSES	Describe the identification of NH ⁴⁺ ions by addition of aqueous OH		
12	Explain the benefits of nitrogenous fertilisers for crop growth and the problems that arise		
	when they are washed into waterways		